“Mars tugs at the human imagination like no other planet. With a force mightier than gravity, it attracts the eye to the shimmering red presence in the clear night sky.”

~ John Noble Wilford

Welcome to the Mars 2020 Exploration Mission Guide, a truly special issue of RocketSTEM magazine. We are devoting the entire issue to informing you about the upcoming mission to the Red Planet, which will include the first-ever interplanetary helicopter.
The planet Mars is probably the most studied planet, other than Earth, in our solar system. Like Earth, Mars is a terrestrial planet, as opposed to a gas planet like Jupiter for example. Mars is often referred to as the Red Planet, due to the brownish-red color of its surface caused by iron oxide in the soil. You may be surprised that out of all the planets in our solar system, Mars is just the second largest planet, only eclipsing Mercury in size.

Mars has the fourth furthest orbit away from our sun. Its relative closeness to Earth makes it a popular target for astronomy buffs to view. In fact, Mars has been observed for over 3,000 years. Ancient Egyptian and Chinese astronomers’ records both document observations of the red planet.

HISTORY AND MYTHOLOGY

To observers before the dawn of the telescope, Mars was nothing more than a bright light in the sky, but unlike many other lights in the sky, it wasn’t always in the same place in the sky and that made it unusual and more easily noticed.

Mars gets its current name from the Roman god of war, however, it went by other names in different cultures. To the people of ancient China, it was known as the “fire star”, ancient Sumerians believed that Mars was Nergal, the god of war and plague, it was referred to in Mesopotamian texts as the “star of judgment of the fate of the dead”. The Greeks knew it as Ares, their god of war.

The first person to observe Mars through a telescope was Galileo Galilei in 1610.

MARS FACT SHEET

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>0.53 Earths</td>
</tr>
<tr>
<td>Diameter</td>
<td>6779 Kilometers</td>
</tr>
<tr>
<td>Mass</td>
<td>6.42×10^{23} kg (0.151 Earths)</td>
</tr>
<tr>
<td>Gravity</td>
<td>0.375 that of Earth</td>
</tr>
<tr>
<td>Orbital Period (1 Martian Year)</td>
<td>687 Earth Days</td>
</tr>
<tr>
<td>Rotational Period (1 Martian Day)</td>
<td>24 hours 37 minutes</td>
</tr>
<tr>
<td>Average Surface Temperature</td>
<td>-81 degrees F</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Mainly Carbon Dioxide</td>
</tr>
</tbody>
</table>
COOL MARS FACTS

MARS HAS POLAR ICE CAPS

Other than Earth, Mars is the only other planet in our solar system that has polar ice caps. The northern cap is named the Planum Boreum and the southern cap is named Planum Australe. Under both Martian ice caps, water ice has been found which helps substantiate the possibility of life having existed on the planet at some point.

MARS TAKES THE LONG WAY AROUND THE SUN

Being farther away from our Sun than Earth is means that Mars takes longer to go around the Sun than Earth does, 687 days to be exact. Its orbit is much more elliptical than Earth’s orbit.

MARS HAS SEASONS LIKE EARTH

Mars is tilted on its axis just like Earth is. Mars’s axis of rotation is tilted 25.2 degrees like Earth which has an axial tilt of 23.4 degrees. This tilt is why we have seasons on Earth and Mars has seasons also. However, on Mars, those seasons last much longer because of the length of time it takes for Mars to orbit the Sun. Since the orbit of Mars is more elliptical, that is egg-shaped, than Earth’s orbit is, it results in the seasons on Mars to vary in length. The shortest season on mars lasts 142 days and the longest lasts 194 days.
A DAY ON MARS SEEMS JUST ABOUT THE SAME AS A DAY ON EARTH

While Mars rotates more slowly on its axis than Earth does, a day on Mars lasts only about 41 minutes longer than a Day on Earth does. This is due to the diameter of Mars being about 3,700 miles less than the diameter of Earth.

DOUBLE THE NATURAL SATELLITES

Mars has two small irregularly shaped moons named Phobos and Deimos. Like Mars, their names are derived from Roman times. According to Roman myth, Mars rode on a chariot pulled by two horses named Phobos (fear) and Deimos (panic). Phobos is the larger of the two, measuring 22.2 Km (13.8 miles) across, while Deimos is just 12.6 km (7.8 Miles. By comparison our moon is 1,737.5 km (1,079.6 mi) across. While our moon orbits at an average distance of 384,472 km (238,900 mi) from Earth, Phobos zips around just 6,000 kilometers (3,700 miles) above the Martian surface. Phobos is also getting closer to Mars, closing in at a rate of about 1.8 meters (6 feet) per century, it’s expected to impact the surface of Mars in about 50 million years. It’s possible that after that collision, the debris may form a ring around the planet.

A MOUNTAIN CLIMBERS DREAM

Mars has the tallest mountain in the solar system. Olympus Mons is a 25 km (15.5343 mi or 82021Ft) high shield volcano that formed billions of years ago. Its base is 624 km (374 mi) in diameter. The largest volcano on Earth, Mauna Loa, is 10 km (6.3 mi) high and 120 km (75 mi) across at its base.

Mars' moons Phobos (left) and Deimos (right) imaged by the Mars Reconnaissance Orbiter. Credit: NASA/JPL-Caltech/University of Arizona

Olympus Mons color-coded according to height from white (highest) to blue (lowest), based on images from ESA’s Mars Express. Credit: ESA/DLR/FU Berlin (G. Neukum)
YOU CAN JUMP HIGHER AND FURTHER

Gravity on Mars is roughly 1/3rd (37.5%) of what it is here on Earth. That would enable you to jump higher and further than here on Earth. You could probably throw a football further than Peyton Manning too!

GETTING TO MARS IS DIFFICULT

Mars is a popular target to explore. As of July 15, 2020, a total of 45 missions have been launched, but only 26 have had some level of success. Some were lost during launch, others attempting to orbit the Red Planet, and others attempting to land on it. But those successes have supplied us with astonishing data and images from Mars. Some have astonished both us and the engineers who designed them, such as the Spirit and Opportunity rovers, which launched in 2003 and 2004 respectively on what was first thought to be short 90-day missions for the solar-powered rovers. Amazingly, the Spirit rover operated until 2010 and Opportunity operated until 2019!

BRING YOUR FEATHER DUSTER

Dust storms on the Martian surface can be huge and can last for months, sometimes engulfing the entire planet.

LITTLE GREEN MEN?

For years it was believed that life existed on Mars. An astronomer named Giovanni Schiaparelli discovered what he thought were straight lines on the surface of Mars in 1877. These lines were too straight to be naturally occurring and it was thought by some that they could only have been artificially created by some sort of intelligent life, possibly canals used for irrigation. Schiaparelli’s telescopes were crude in comparison to today’s and when better telescopes came out it was determined that the lines were not straight at all but just an optical illusion. Sorry, there are no little green men.
How about a little quiz to test your knowledge about Mars? This RocketSTEM exclusive QuizMe contains 15 questions about the planet, its moons, and exploration missions.

1. Mars is named after which Roman god?
 A. God of Love
 B. God of War
 C. God of Fire
 D. God of Time

2. What are the names of Mars’ two moons?
 A. Phobos and Oberon
 B. Callisto and Titania
 C. Titania and Deimos
 D. Phobos and Deimos

3. Olympus Mons on Mars is 5 times taller than Mount Everest on Earth?
 A. True
 B. False
4. What are the main constituents of Mars’s atmosphere?
 A. Carbon Dioxide and Nitrogen
 B. Oxygen and Carbon Dioxide
 C. Carbon Dioxide and Methane
 D. Methane and Argon

5. How many successful missions have been sent to Mars? (As of July 2020)
 A. 40
 B. 22
 C. 18
 D. 26

6. It would take over six Mars to fill up the volume of Earth?
 A. True
 B. False
7. Which of the following was the first rover to land on Mars?
 A. Curiosity
 B. Sojourner
 C. Opportunity
 D. Exploration

8. How long does it take Mars to complete one orbit of the Sun?
 A. 687 days
 B. 459 days
 C. 543 days
 D. 782 days

9. What is the name of NASA’s Martian rover set to be launched in 2020?
 A. Persistence
 B. Perseverance
 C. Ingenuity
 D. Endurance
10. Which of the following is not a location on Mars?
 A. Tharsis Rise
 B. Elysium Mons
 C. Argyre Basin
 D. Valles Vikings

11. What is the average temperature on Mars?
 A. 10 °C (50 °F)
 B. 0 °C (32 °F)
 C. -63 °C (-81 °F)
 D. -29 °C (-20 °F)

12. How far is Mars from the sun?
 A. 228 million km (141 million mi)
 B. 149 million km (92 million mi)
 C. 274 million km (170 million mi)
 D. 249 million km (154 million mi)
13. Mars is home to the largest dust storms in the solar system?
 A. True
 B. False

14. Martian sunsets are red in color?
 A. True
 B. False

15. Fill in the blank: Mars is the _____ smallest planet in our solar system.
 A. First C. Third
 B. Second D. Fourth

* Answer keys are placed at the back of this publication.
FRESH IMPACT CRATER NEAR SIRENUM FOSSAE
Credit: ESA/Roscosmos/CaSSIS
The Mars 2020 Perseverance mission is NASA’s next mission to Mars as well as being the most complex and scientifically advanced robotic mission sent to the Red Planet.

The $2.4 Billion Mars Perseverance rover is a flagship mission dedicated to the search for signs of life beyond Earth, as part of NASA’s Mars Exploration Program, a long-term effort of robotic exploration of the Red Planet.

The Perseverance Mars 2020 mission will search for signs of ancient microbial life, characterize Mars’ climate and geology, collect carefully selected samples for future return to Earth, and pave the way for human exploration of the Red Planet as soon as the 2030s.

Perseverance will also ferry a separate technology experiment to the surface of Mars — a helicopter named Ingenuity, the first aircraft to fly in a controlled way on another planet.

Launch is now targeted for a launch opportunity in the July/August timeframe when Earth and Mars are aligned in good positions relative to each other for landing on Mars.

The car-sized Perseverance Mars 2020 rover is targeted for liftoff on NET 30 July 2020 aboard a United Launch Alliance (ULA) Atlas V 541 rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.

The approximately month-long launch window for the Mars 2020 Perseverance rover mission currently extends until August 15.
Such opportunities are dictated purely by celestial mechanics and only occur every 26 months when the Earth and Mars are properly aligned.

NASA’s Mars 2020 Perseverance rover mission has suffered several significant delays to her launch from the Florida Space Coast to the Red Planet from the original target of July 17 due to contamination and rocket issues as well as staffing level restrictions due to the COVID-19 coronavirus pandemic.

If NASA and ULA cannot launch Mars 2020 Perseverance within the narrow one-month-long window of opportunity, she will have to wait another two years until 2022 until the orbits of our Home Planet and the Red Planet align properly to enable blastoff. Such a postponement would cost $0.5 Billion additional funding and the rover would be placed in storage.

After launch Mars 2020 Perseverance begins a seven-month-long 314 million miles (505 million kilometers) interplanetary journey to the Red Planet where it will search for signs of life.

Perseverance is scheduled to touch down in an area of Mars known as Jezero Crater on Feb. 18, 2021. The crater is home to an ancient dried-up river delta and a lake that once filled it.

The one-ton rover will spend at least one Mars year (two Earth years) exploring the landing site region.

Perseverance is a robotic scientist weighing about 2,260 pounds (1,025 kilograms) and includes a robotic arm with a 99-pound (45-kilogram) turret at the end.

The rover is equipped with six advanced aluminum wheels on a rocker-bogie system.

The SUV sized rover dimensions are 10 feet (3 m) long, 9 feet (2.7 m) wide and 7 feet (2.2 m) tall with a 7 feet (2.1 meters) long robotic arm.

The rover is equipped with seven different scientific instruments and the mission includes 25 cameras – the most ever to Mars and deep space. The rover itself is equipped with 19 cameras.

The science payload has a mass of 130 pounds (59 kilograms) for seven instruments: Mastcam-Z, Mars Environmental Dynamics Analyzer (MEDA), Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE), Planetary Instrument for X-ray Lithochemistry (PIXL), Radar Imager for Mars’ Subsurface Experiment (RIMFAX), Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) and SuperCam.
The solar-powered Ingenuity helicopter is a technology demonstration experiment aimed at attempting the first flight on Mars.

The four-legged Ingenuity has a mass of about 4.0 pounds (1.8 kilograms) and stands 1.6 feet or 19 inches (0.49 meters) high. It is equipped with two counter-rotating blades for lift spinning at about 2,400 rpm and two cameras.

To keep mission costs and risks as low as possible, the Mars 2020 design is based on NASA’s successful Mars Science Laboratory mission architecture, including its Curiosity rover and proven landing system.

Perseverance is about 278 pounds (126 kilograms) heavier than Curiosity.

However, the suite of seven science instruments are completely new and some hardware such as the wheels have been modified based on experience with Curiosity where they suffered damage over time on the rough terrain.

The rover also carries the first Mars Helicopter – named Ingenuity on its belly. The helicopter is a technology experiment and planned as the first aircraft to fly in a controlled way on another planet.

Names:

NASA conducted a “Name the Rover” contest for the Mars 2020 rover and helicopter with more than 28,000 essays submitted.

Rover: Perseverance, submitted by Alex Mather, 13, of Lake Braddock Secondary School in Burke, Virginia.

Helicopter: Ingenuity, submitted by Vaneeza Rupani, 17, of Tuscaloosa County High School in Northport, Alabama.

Microchip:

The names of over 10.9 million people are stenciled by electron beam onto three fingernail-sized silicon chips as part of NASA’s “Send Your Name to Mars” campaign.
LANDING SITE:

Jezero Crater on Mars is a 28-mile-wide (45-kilometer-wide) crater on the western edge of Isidis Planitia, a giant impact basin just north of the Martian equator. The crater was a possible oasis in its distant past.

Between 3 billion and 4 billion years ago, a river there flowed into a body of water the size of Lake Tahoe, depositing sediments packed with carbonite minerals and clay. The Perseverance science team believes this ancient river delta could have collected and preserved organic molecules and other potential signs of microbial life.

MARS 2020 COMPONENTS:

Based on the successful Mars Science Laboratory Curiosity design.

Cruise Stage: Configuration for travel between Earth and Mars includes an aeroshell (backshell with heat shield) in which the rover and its landing system are enclosed. Powered by solar cells equipped with thrusters.

Entry, Descent and Landing (EDL) system: Configuration for entry into the Martian atmosphere. Includes the aeroshell, parachute, descent vehicle, and structure for a skycrane maneuver that will lower the rover to the Martian surface on tethers.

Rover: 6-wheeled rover with science instruments.

SCIENCE AND SAMPLING GOALS:

The Perseverance rover will explore the geologically diverse Jezero Crater landing site, assess it for ancient habitability, and search for signs of ancient life especially in certain types of rocks that preserve signs of life over time.
The Mars Perseverance mission addresses high-priority science goals for Mars exploration, including key questions about the potential for life on Mars. The mission takes the next step by not only seeking signs of habitable conditions on Mars in the ancient past but also searching for signs of past microbial life itself.

The Mars Perseverance rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a “cache” on the surface of Mars.

The rover will gather a few dozen rock and soil samples and place them in sealed tubes for returned to Earth by a future NASA mission.

The mission also provides opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars. These include testing a method for producing oxygen from the Martian atmosphere, identifying other resources (such as subsurface water), improving landing techniques, and characterizing weather, dust, and other potential environmental conditions that could affect future astronauts living and working on Mars.

SCIENCE INSTRUMENT PAYLOAD:

Perseverance will carry seven instruments to conduct unprecedented science and test new technology on the Red Planet. They are:

- **Mastcam-Z:** An advanced camera system with panoramic and stereoscopic imaging capability with the ability to zoom. The instrument also will determine the mineralogy of the Martian surface and assist with rover operations. The principal investigator is James Bell, Arizona State University in Tempe.

- **SuperCam:** An instrument that can provide imaging, chemical composition analysis, and mineralogy at a distance. The principal investigator is Roger Wiens, Los Alamos National Laboratory, Los Alamos, New Mexico. This instrument also has a significant contribution from the Centre National d’Études Spatiales, Institut de Recherche en Astrophyse et Planétologie (CNES/IRAP), France.

- **Planetary Instrument for X-ray Lithochemistry (PIXL):** An X-ray fluorescence spectrometer and high-resolution imager to map the fine-scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before. The principal investigator is Abigail Allwood, NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.
• **Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC):** A spectrometer that will provide fine-scale imaging and uses an ultraviolet (UV) laser to map mineralogy and organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other instruments in the payload. SHERLOC includes a high-resolution color camera for microscopic imaging of Mars' surface. The principal investigator is Luther Beegle, JPL.

• **The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE):** A technology demonstration that will produce oxygen from Martian atmospheric carbon dioxide. If successful, MOXIE's technology could be used by future astronauts on Mars to burn rocket fuel for returning to Earth. The principal investigator is Michael Hecht, Massachusetts Institute of Technology, Cambridge, Massachusetts.

• **Mars Environmental Dynamics Analyzer (MEDA):** A set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity, and dust size and shape. The principal investigator is Jose Rodriguez-Manfredi, Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Spain.

• **The Radar Imager for Mars' Subsurface Experiment (RIMFAX):** A ground-penetrating radar that will provide centimeter-scale resolution of the geologic structure of the subsurface. The principal investigator is Svein-Erik Hamran, the Norwegian Defense Research Establishment, Norway.
INGenuity MARS HELICOPTER:

Ingenuity is a technology demonstration experiment that seeks to test a new capability for the first time – namely the first aircraft to attempt controlled flight on another planet. It is attached to the belly

Mass: about 4.0 pounds (1.8 kg). Height: 1.6 feet (0.49 meters)

Rotor system: Two pairs of counter-rotating blades, spanning 4 feet (1.2 meters) in diameter, spinning at about 2,400 rpm - about eight times as fast as a standard helicopter on Earth.

Equipped with innovative solar cells, battery, avionics, sensors, telecommunications, and other designs and algorithms.

Many components are commercial, off-the-shelf parts from the world of smartphones, including two cameras, an inertial measurement unit (measuring movement), an altimeter (measuring altitude), an inclinometer (measuring tilt angles) and computer processors.

Fuselage (body) dimensions: 0.446 feet by 0.64 feet by 0.535 feet (13.6 centimeters by 19.5 centimeters by 16.3 centimeters); four legs, each about 1.26 feet (0.384 meters) long, giving the helicopter about 0.427 feet (0.13 meters) of clearance above the ground

Power: Solar panel that charges lithium-ion batteries, providing enough energy for one 90-second flight per Martian day (about 350 watts of average power during flight)

Ingenuity is attached to the rover belly and will be deployed about two months after landing onto a flat Martian field.

Ingenuity will fly autonomously. No joystick with real time-human intervention from Earth due to communications delays across interplanetary distances.

Up to five test flight attempts are planned by the helicopter team within a 30-Martian-day (31-Earth-day) window.
CAMERAS:

19 cameras total on the rover: 9 for engineering (color); 3 for entry, descent and landing (1 black-and-white dedicated to Terrain-Relative Navigation and 2 color for public engagement and engineering reconstruction of entry, descent and landing); 2 for Mastcam-Z (color with zoom); 1 for SuperCam (color); 2 for SHERLOC (color); 1 for PIXL (black-and-white with some color capabilities); and 1 for MEDA (black-and-white)

3 cameras on the back shell: all color, all looking up to capture parachute inflation

1 camera on the descent stage: color, looking down to view the rover from above

2 cameras on Ingenuity: 1 color for an oblique view for terrain images and 1 black-and-white for navigation

MICROPHONES:

1 on SuperCam and 1 on the side of the rover for public engagement and later entry, descent and landing analysis

POWER:

The power system is a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) provided by the U.S. Department of Energy with a mass of 99 pounds (45 kg) and holds 10.6 pounds (4.8 kg) of plutonium dioxide. Heat generated from the natural decay of plutonium-238 will be converted to a steady flow of about 110 watts of electricity. Two lithium-ion rechargeable batteries are available to meet the peak demands of rover activities when the demand temporarily exceeds the MMRTG’s electrical output levels. Overall 14-year operational lifetime.
ULA Atlas V rocket:

Mars 2020 liftoff is targeted for July 30, 2020, at 7:50 a.m. ET, aboard a two-stage United Launch Alliance (ULA) Atlas V 541 rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida. Procured under NASA’s Launch Services Program.

The 541 configuration features a 5-meter fairing, 4 solid rocket boosters, and a single-engine Centaur upper stage.

Height: 191 feet (58 m)

Mass, fully fueled, with spacecraft on top: About 1.17 million pounds (531,000 kg)

Mission Website:

https://mars.nasa.gov/mars2020/

Social Media:

Twitter: https://twitter.com/NASAPersevere/ @NASAPersevere

Facebook: https://www.facebook.com/NASAPersevere/

Program Management:

The Mars 2020 Project is managed for NASA’s Science Mission Directorate, Washington, D.C., by the Jet Propulsion Laboratory (JPL), a division of Caltech in Pasadena, California.
Mars 2020 is a NASA rover mission with a targeted launch date of July 17, 2020. The rover and its companion helicopter drone are set to land within a Martian crater on February 18, 2021. The mission will investigate the possibility of past life having existed on Mars. The rover will cache sample containers along its route for a potential future Mars sample-return mission.
DOWN:
1. The electronics used to control planes, helicopters, drones, and other flying mechanisms.
3. A chemical used to create force to move a rocket in a direction.
4. The ability for a robot to act without direct input from a human. The Mars 2020 helicopter will fly itself.
6. Resistance of a body to change velocity.
7. Name of the Mars 2020 rover. Tenacity, unwillingness to give up.
8. To pollute areas or surfaces with debris or microorganisms.
10. A rocket powered raft system that will provide the last, gentle landing stage of the Mars 2020 rover.
11. A manufacturing environment free from dust and other contaminants. A room in which the Mars 2020 rover will be assembled.
15. The fourth planet in the solar system.
18. Identify the presence of something.
20. Name of the helicopter riding along with the Mars 2020 rover. A quality of being clever and inventive.
21. Studies the potential for life existing and developing on planets other than Earth.
26. A detection system. Uses high-frequency waves to detect location, movement, and speed of an object.
27. An environment that life can exist or survive in. Begins with “H”.
29. A synthetic fiber with high tensile strength and often used in bullet-proof vests and parachutes.
34. A Greek titan. The name of the rocket type that will launch the Mars 2020 rover.
36. Related to geology. A sample taken by boring into soil and taking a cylindrical piece for analysis.
38. A rock type typically green in color on Earth’s surface. A silicate mineral that weathers easily.
40. A layered rock created by cyanobacteria. Theorized to be near the Mars 2020 landing site.

ACROSS:
9. A rocket providing thrust opposite of the motion of vehicle.
13. Distance gained over time in one direction. Speed.
14. Makes up ~41% of Earth’s crust and is a sign of volcanism on Mars’ surface. Begins with “F”.
16. Acronym for Mars Oxygen ISRU Experiment, also a word for determination or nerve.
17. The height of an object relative to the ground.
19. The number of bacteria on a surface that hasn’t been sterilized.
22. A cloth canopy used to slow the descent of body from free-fall.
23. Tendency of a mineral to break along planar surfaces determined by its crystal lattice.
24. An isotope that emits radiation as it decays.
25. Very old. The distant past. Life may have existed on Mars in ________ times.
28. An envelope of gases surrounding a planet. Mars has a very thin one.
30. Soft, stratified sedimentary rock that can be split easily into fragile slabs. Common on Mars surface.
31. The act of a rocket moving up through the air.
32. A type of feldspar mineral that is typically transparent, glassy, and brittle. A silicate.
33. A dark, fine grained volcanic mineral. The Martian crust consists mainly of this mineral.
35. A protective outer surface of a spacecraft to protect it from the heat of atmospheric re-entry.
37. AKA chemical or molecular fossil. Can provide scientific evidence of past or present life on a surface.
Building for MARS
MARS EXPLORATION HISTORICAL TIMELINE

1960s

MARSNIK 1

Failure

USSR • Oct. 10, 1960 • Flyby
Did not reach Earth orbit.

MARSNIK 2

Failure

USSR • Oct. 14, 1960 • Flyby
Did not reach Earth orbit.

SPUTNIK 22

Failure

USSR • Oct. 24, 1962 • Flyby
Achieved Earth orbit only.

MARS 1

Failure

USSR • Nov. 1, 1962 • Flyby
Radio failed at 65.9 million miles (106 million km).

SPUTNIK 24

Failure

USSR • Nov. 4, 1962 • Flyby
Achieved Earth orbit only.

MARINER 3

Failure

United States • Nov. 5, 1964 • Flyby
Shroud failed to jettison.

MARINER 4

Success

United States • Nov. 28, 1964 • Flyby
First successful flyby July 14, 1965; returned 21 photos.

ZOND 2

Failure

USSR • Nov. 30, 1964 • Flyby
Passed Mars but radio failed, returned no planetary data.

MARINER 6

Success

United States • Feb. 24, 1969 • Flyby
Successful flyby July 31, 1969; returned 75 photos.

MARINER 7

Success

United States • March 27, 1969 • Flyby
Successful flyby Aug. 5, 1969; returned 126 photos.

MARS 1969A

Failure

USSR • March 27, 1969 • Orbiter
Did not reach Earth orbit.

MARS 1969B

Failure

USSR • April 2, 1969 • Orbiter
Failed during launch.
<table>
<thead>
<tr>
<th>Mission</th>
<th>Status</th>
<th>Country</th>
<th>Launch Date</th>
<th>Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARINER 8</td>
<td>Failure</td>
<td>United States</td>
<td>May 8, 1971</td>
<td>Orbiter</td>
<td>Failed during launch.</td>
</tr>
<tr>
<td>KOSMOS 419</td>
<td>Failure</td>
<td>USSR</td>
<td>May 10, 1971</td>
<td>Lander</td>
<td>Achieved Earth orbit only.</td>
</tr>
<tr>
<td>MARS 2</td>
<td>Partial Success</td>
<td>USSR</td>
<td>May 19, 1971</td>
<td>Orbiter & lander</td>
<td>Arrived Nov. 27, 1971; orbiter returned data and images; lander burned up due to steep entry.</td>
</tr>
<tr>
<td>MARS 5</td>
<td>Partial Success</td>
<td>USSR</td>
<td>July 25, 1973</td>
<td>Orbiter</td>
<td>Arrived Feb. 12, 1974, lasted a few days.</td>
</tr>
<tr>
<td>MARS 6</td>
<td>Partial Success</td>
<td>USSR</td>
<td>Aug. 5, 1973</td>
<td>Flyby module & lander</td>
<td>Arrived March 12, 1974, lander failed due to fast impact; flyby module returned data</td>
</tr>
<tr>
<td>MARS 7</td>
<td>Failure</td>
<td>USSR</td>
<td>Aug. 9, 1973</td>
<td>Flyby module & lander</td>
<td>Arrived March 9, 1974, lander missed the planet.</td>
</tr>
<tr>
<td>VIKING 2</td>
<td>Success</td>
<td>United States</td>
<td>Sept. 9, 1975</td>
<td>Orbiter & lander</td>
<td>Entered orbit Aug. 7, 1976, and operated until July 25, 1978; landed Sept. 3, 1976, and operated until April 11, 1980; combined, the Viking orbiters and landers returned more than 50,000 photos.</td>
</tr>
</tbody>
</table>
1980s

PHOBOS 1

Failure

USSR • July 7, 1988 • Mars orbiter & Phobos lander
Lost August 1988 en route to Mars.

PHOBOS 2

Partial Success

USSR • July 12, 1988 • Mars orbiter & Phobos lander
Entered orbit, lost contact March 1989 near Phobos.

1990s

MARS OBSERVER

Failure

United States • Sept. 25, 1992 • Orbiter
Lost just before Mars arrival Aug. 21, 1993.

MARS GLOBAL SURVEYOR

Success

United States • Nov. 7, 1996 • Orbiter

MARS PATHFINDER (SOJOURNER)

Success

United States • Dec. 4, 1996 • Lander & rover

NOZOMI

Failure

Japan • July 4, 1998 • Orbiter
Failed to enter orbit December 2003.

MARS CLIMATE ORBITER

Failure

United States • Dec. 11, 1998 • Orbiter
Lost upon arrival Sept. 23, 1999.

MARS POLAR LANDER/DEEP SPACE 2

Failure

United States • Jan. 3, 1999 • Lander & two penetrators
MARS ODYSSEY
Success
United States • March 7, 2001 • Orbiter

MARS EXPRESS/BEAGLE 2
Partial Success
Europe • June 2, 2003 • Orbiter & lander

MARS EXPLORATION ROVER-A (SPIRIT)
Success
United States • June 10, 2003 • Rover

MARS EXPLORATION ROVER-B (OPPORTUNITY)
Success
United States • July 7, 2003 • Rover

MARS RECONNAISSANCE ORBITER
Success
United States • Aug. 12, 2005 • Orbiter
Entered orbit March 12, 2006, completed prime mission 9/26/10, currently conducting extended mission of science collection and communication relay.

PHOENIX MARS LANDER
Success
United States • Aug. 4, 2007 • Lander
PHOBOS-GRUNT/YINGHUO 1

Failure

Russia/China • Nov. 8, 2011 • Phobos lander with sample return & Mars orbiter
Achieved Earth orbit only.

MARS SCIENCE LABORATORY (CURIOSITY ROVER)

Success

United States • Nov. 26, 2011 • Rover
Landed Aug. 6, 2012, completed prime mission, currently conducting extended science mission.

MARS ORBITER MISSION (MANGALYAAN)

Success

India • Nov. 5, 2013 • Orbiter

MARS ATMOSPHERE AND VOLATILE EVOLUTION MISSION (MAVEN)

Success

United States • Nov. 18, 2013 • Orbiter;
Entered orbit Sept. 21, 2014; completed prime mission, currently conducting extended science mission.

EXOMARS 2016 (TRACE GAS ORBITER AND SCHIAPARELLI MODULE)

Partial Success

Europe • March 14, 2016 • Orbiter & landing-demonstration module

INSIGHT LENDER

Success

United States • May 5, 2018 • Lander
Landed Nov. 26, 2018, currently conducting prime mission at Elysium Planitia.

MARCO

Success

United States • May 5, 2018 • Two-CubeSat providing data relay for InSight Lander.
EMIRATES HOPE MISSION
United Arab Emirates • NET July 19, 2020 • Orbiter

MARS 2020
United States • NET July 30, 2020 • Rover

TIANWEN 1
China • NET July/August 2020 • Orbiter, lander & rover

EXOMARS 2022
Europe/Russia • 2022 • Lander & rover

MARS TERA-HERTZ EXPLORER
Japan • 2022 • Orbiter & lander

MARS ORBITER MISSION 2
India • July 16, NET 2022 • Orbiter, possibly lander & rover

MARTIAN MOONS EXPLORATION
Japan • NET 2024 • Orbiter, Phobos lander & sample return back to Earth
ICE-COATED KOROLEV CRATER Credit: ESA/Roscosmos/CaSSIS
1. The letters in the acronym “InSight” stand for:
 A. Intelligent Night Seeking in the Greatest Chronological Terraces
 B. Inner Seated Internal Geological Heat Tiles
 C. Interior exploration using Seismic Investigations, Geodesy & Heat Transport
 D. Idle negated Standing Igneous Geo Thermal Timing

2. What unique mechanism was used to land the Curiosity rover on Mars?
 A. Rocket landing
 B. Parachute and sky crane
 C. Airbag dropped on the surface
 D. Capsule using reverse thrusters

3. The Mars Polar Lander/Deep Space 2 mission was lost upon its arrival at Mars. Had it been successful, the spacecraft would have landed near the edge of the planet’s southern polar cap to dig for __________ with a robotic arm.
 A. Granite
 B. Diamonds
 C. Fossils
 D. Water Ice
4. In January, 2004, the Mars Exploration Rover mission landed two rovers on the surface of Mars to observe the atmosphere and conduct field geology. The names of the two rovers were?

A. Spirit and Opportunity
B. Freedom and Curiosity
C. Delta and Gamma
D. Tom and Jerry

5. The MAVEN (Mars Atmospheric and Volatile EvolutioN) spacecraft is the first to ever make direct measurements of the _________________.

A. Microbes on the surface
B. Martian atmosphere
C. Water ice
D. Fault lines

6. The longest-lasting spacecraft at Mars is the Mars Odyssey mission, launched in 2001. Is the orbiter’s extended operations still continuing to take place in 2020?

A. True
B. False
7. The most powerful camera sent on a planetary mission, flew on which mission?
 A. Curiosity
 B. InSight
 C. Polar Lander
 D. Reconnaissance Orbiter

8. The first U.S. mission to land a spacecraft on Mars and return images of the planet’s surface was _________.
 A. Mariner Project
 B. Viking Project
 C. X-Files Project
 D. Pathfinder Project

9. NASA’s JPL (Jet Propulsion Laboratory) designed and built how many Mariner spacecraft to explore the inner solar system, between 1962 and 1973?
 A. 3
 B. 7
 C. 10
 D. 15
10. This "selfie" was taken by which rover at the Hutton Drill Site on Mars?
 A. Opportunity C. InSight
 B. Curiosity D. Pathfinder

11. On July 4, 1997, the Mars Pathfinder mission landed on Mars. The name of the rover on board was what?
 A. Truth C. Starfinder
 B. Sojourner D. Vulcan

12. The separate Martian landing locations for the Spirit and Opportunity rovers were Gusev Crater and Meridiani Planum. These sites were targeted since they showed evidence of being affected by what?
 A. Liquid water C. Hurricanes
 B. Earthquakes D. Gravity
13. India is the fourth nation to successfully send a spacecraft to Mars. What was the name of the mission?
 A. MOTT
 B. MASS
 C. MAMM
 D. MOM

14. What is the name of the joint European/Russian mission slated for 2022?
 A. ExOTeRRa
 B. ExoPlanets
 C. ExoMars
 D. ExOMeter

15. The _____ mission, was an ambitious Russian mission launched in the 1990s, to investigate the evolution of the Martian atmosphere, its surface, and its interior.
 A. Mars 1
 B. Mars 30
 C. Mars 55
 D. Mars 96
Artist’s illustration of **INGENUITY** flying through the skies of Mars.

Image credits: NASA/JPL-Caltech
NASA’s Perseverance Mars rover, launching in July 2020, will carry the first helicopter to the surface of Mars! This helicopter has to be super lightweight to fly on Mars. It also needs large blades that can rotate really fast so it can generate enough lift to overcome the gravity of the Red Planet and lift off the ground.

In this NASA/JPL-Caltech activity project, you will build a paper helicopter. Then, just as NASA engineers had to try out different versions of the Mars helicopter before coming up with a final design, you will experiment with the design of your helicopter to see what works best.

WATCH THE TUTORIAL

In this episode of Learning Space, you’ll learn how to build a paper helicopter, then see if you can improve the design like NASA engineers did when making the first helicopter for Mars. | Watch on YouTube

See below for materials and step-by-step instructions. For more video tutorials and activities like this one, visit Learning Space.

MATERIALS

- Plain paper OR a copy of the template – Download PDF
- Scissors
- Measuring tape
- Pencil
- (Optional) 3-meter (10-foot) length of lightweight ribbon or smartphone camera

Don’t worry if you don’t have all of the materials. Get creative and substitute materials with what you have! It’s all part of the design process.

1. CUT OUT THE HELICOPTER

Cut along the dashed lines of the template. If you’re using plain paper, make a sketch of the helicopter solid and dashed lines as a guide.
2. FOLD ALONG THE SOLID LINES

The propeller blades, A and B, should be folded in opposite directions along the solid lines. The X and Y panels fold toward the center, and Z is folded upward to give the body of the helicopter rigidity and lower its center of gravity for more stable flight.

3. DO A TEST FLIGHT

Stand up and hold the helicopter by its body. Raise it as high in the air as you can. Now, drop it. What do you observe? Which way do the blades turn? Drop the helicopter from a higher spot. (Climb a few stairs or stand on a step stool.) How does the performance change?

4. COMPARE

Grab an unfolded piece of paper the same size as the one used to make the helicopter. Drop it at the same time as the helicopter. Which falls faster? Wad up the piece of paper into a ball. Drop this paper ball at the same time as the helicopter. Which falls faster? Can you guess why? Hint: It has something to do with air resistance.
5. EXPERIMENT

Make one change to your helicopter. Try folding the bottom up one more fold, or shortening or changing the shape of the blades. How does the performance of your helicopter change? Why? Can you figure out a way to make your helicopter blades turn faster or slower?

6. MAKE A NEW MODEL

To make the Mars helicopter, NASA engineers had to build and test multiple designs to find something that could get enough lift from the Red Planet's thin atmosphere.

Lift is a force that is generated when the slightly angled moving blades of the helicopter encounter air particles. This increases the air pressure on the bottom of the blades. And the increased air pressure forces the blades and the entire helicopter up into the air. When there are fewer air particles in the atmosphere, less lift is generated. Mars' atmosphere has only 1% of the particles of Earth's atmosphere. This means that blades that generate enough lift on Earth won't work on Mars.

To generate enough lift for the Mars helicopter, engineers gave it two sets of enormous blades that are 4 feet (1.2 meters) across and rotate about 10 times as fast as those of helicopters on Earth.

Think about how you want to improve the performance of your helicopter and make another one that is different from your first. Use a different kind of paper or make a much smaller or much larger one. How big of a helicopter can you make that will still work? How small of a helicopter can you make? How do helicopters with different blade sizes compare in performance? What size works best? How do you define "best performance"?
7. REVERSE IT
Notice which way your helicopter blades turn. Is it clockwise or counterclockwise? Is this consistent for all of your helicopters? What is a single change you can make to your helicopters to make them spin in the opposite direction?

8. COUNT THE ROTATIONS
Measure the height of your shoulder and write this down. Choose your best-performing helicopter and drop it from shoulder height. Count the number of rotations it makes before landing. If counting the rotations is difficult because of the speed, either record a video of the drop and play it back in slow motion or attach a straightened ribbon to the bottom of the helicopter body. You can count the twists in the ribbon after it lands. Record this number next to the drop height.

9. REPEAT
What would happen if you dropped the helicopter from a lower height? Repeat the measuring, dropping and counting from a lower height.

10. PREDICT
How many times would the helicopter rotate if you dropped it from a taller height? Measure a taller height, and then predict the number of rotations your helicopter will make.

11. TEST YOUR PREDICTION
Drop your helicopter from the taller height and see how close your prediction was. Try again from other heights and see if you can make better predictions each time!

EXPLORE MORE
Explore the wonder of space exploration from home but visiting these NASA educational websites.

NASA Space Place
NASA STEM at Home for Students
10 Things to Do With NASA at Home
Standards-aligned lessons for educators
“SMOKY” CLOUDS ON MARS
Credit: ISRO/ISSDC/Justin Cowart
Objective

Apply trigonometric ratios to the NASA Mars Helicopter Scout so that flight data such as climb angle and average speed can be calculated given initial flight parameters.

Vocabulary

- **Slope:** The angle the rille wall makes to the horizontal.
- **Above Ground Level (AGL):** The altitude as measured from the local area.
- **Altitude:** The height that an object is in the air.
- **Average Speed:** The Round Trip Distance divided by the Travel Time Climb.
- **Angle:** The angle formed between the rover and the FTP.
- **Distance to FTP:** The distance from the rover to a point above and downrange of the rover.
- **Flight Time Capacity:** The amount of time that is available to fly.
- **Fly–To–Point (FTP):** A point above the Martian surface.
- **Ground Distance:** The downrange distance from a rover.
- **Hover Time:** The amount of time spent in a stationary position above the ground.
- **Round Trip Distance:** The distance from the rover to the FTP and back to the rover.
- **Travel Time:** The time it takes to fly a certain distance.

Narrative

Roving on Mars is a great way to get from point A to point B, with scientists back on Earth always looking for interesting places for the rovers to go visit and analyze. However, sometimes finding the next spot to visit can be a daunting task since scientists have to rely on satellite imagery to find compelling places to visit. But even these satellite images are not that detailed; it follows that a closer inspection of the places is always more desirable.

In the same way that a ship on the ocean has a Crow’s Nest where the crew can see further, getting to higher ground allows for greater vision of the rover on Mars. But how on Mars can one get to a higher place to see further?

Several solutions present themselves, but each solution is not noteworthy. For example, a tower can be erected from the rover, but the complexity and the mass penalty is probably too much. It would be nice if we could scout the area ahead of the rover, and survey without weighing too much. The reason is because an increase in mass equals to an increase in the amount of propellant needed just to get off the ground.

Analysis

Enter the Mars Helicopter Scout (MHS). This little and ultra lightweight flying machine can take off from the rover and fly out to a distance that the rover cannot see. It has solar panels on the top of the machine, and has two counter-rotating rotors that generate lift in the thin Martian air. The best part? The entire helicopter has a mass of only one kilogram!

The MHS is activated, and is sent instructions to go to a certain Fly–To–Point (FTP) away and above the rover. The helicopter lifts off and flies to the FTP, hovers, and takes images of the terrain that the rover cannot see. Afterwards, the MHS flies back to the rover where it shuts itself down and uses the solar panels to recharge its batteries. Nice!

The MHS has around 3 minutes (180 seconds) of flight time capacity, and has a maximum altitude of 120
meters AGL with a maximum Ground Distance of 600 meters downrange from the rover. These numbers will serve as our constraints for the MHS app.

Scientists on Earth feed the MHS its flight information, and off it goes. The information given to the MHS consists of three parts:

1. Desired Altitude (in meters AGL)
2. Desired Ground Distance away from the rover (in meters)
3. Desired Hover Time (in seconds)

The Rover and FTP form a right triangle, which can be solved easily using trigonometric and triangle identities!

\[
\text{Distance to FTP} = \sqrt{\text{Ground Distance}^2 + \text{Altitude}^2}
\]

\[
\text{Round Trip Distance} = 2(\text{Distance to FTP})
\]

\[
\text{Climb Angle} = \tan^{-1} \left(\frac{\text{Altitude AGL}}{\text{Ground Distance}} \right)
\]

\[
\text{Travel Time} = \text{Flight Time Capacity} - \text{Hover Time}
\]

\[
\text{Average Speed} = \frac{\text{Round Trip Distance}}{\text{Travel Time}}
\]

Example

Scientists on Earth want the MHS to go to a FTP that is 400 meters downrange with an altitude of 100 meters AGL, and a hover time of 60 seconds so that the MHS can take a image of the rover. Find the Round Trip Distance, Climb Angle, and Average Speed of the MHS.

\[
\text{Distance to FTP} = \sqrt{(400)^2 + (100)^2} = \sqrt{160000 + 10000} = \sqrt{170000} = 412 \text{ meters}
\]

\[
\text{Round Trip Distance} = 2(\text{Distance to FTP}) = 2(412) = 825 \text{ meters}
\]
With initial conditions of 400 meters downrange, an altitude of 100 meters AGL, and a 60 second hover time, the MHS will fly a Round Trip distance of 825 meters with a Climb Angle of 14 degrees from the horizon and an Average Speed of almost seven meters per second.

Guided practice

The MHS science team back on Earth wants to image a rock formation ahead of the Mars rover. They wish to fly several sorties. Find the Round Trip Distance, Climb Angle, and Average Speed of the MHS given the different initial flight parameters.

1. Downrange: 50 m; Altitude: 120 m AGL; Hover Time: 60 s
2. Downrange: 150 m; Altitude: 75 m AGL; Hover Time: 45 s
3. Downrange: 320 m; Altitude: 45 m AGL; Hover Time: 35 s
4. Downrange: 550 m; Altitude: 50 m AGL; Hover Time: 30 s
5. Downrange: 400 m; Altitude: 45 m AGL; Hover Time: 35 s

Artwork

Draw a picture of the MHS in its brief flight over the Martian surface in search of interesting places to record as the Earth shines brightly in the sky overhead.

R.A.F.T. writing

- **Role:** Teacher/Instructor/Master
- **Audience:** 8th Graders
- **Format:** Step–By–Step Instructions
- **Topic:** How to calculate the Distance to the FTP by solving for the hypotenuse of a right triangle given the lengths of the two other sides.

Discussion topics

- What is your visual picture of the surface of Mars?
- Do you agree or disagree with the notion of funding explorations to other planets?
- What kind of noise do you think the MHS makes while flying in the Martian atmosphere?
- How is the MHS similar to drones used on Earth? How is it different?
- Could a version of the MHS be used on other planets?
- If you could somehow hop aboard the MHS, describe what you would see.

Conclusion

The Mars Helicopter Scout can fly from its perch on a rover and travel ahead to find captivating places for it to visit. The MHS will certainly make it easier for scientists to “see” further than the rover which is limited in its vision due to being so close to the ground.

Eventually, humans are going to have helicopters flying on Mars. Pretty amazing. One can only imagine what they will think of next.
The Red Planet has been studied throughout human history. The very first mission to Mars was sent in 1960, while the first probe landed in 1971. We’ve hidden 36 words related to Mars exploration below. They may be placed horizontal, vertical, or even diagonal. Good luck!
Question No. 1 Answer: B
Mars is the Roman god of Love. The Romans had named this planet “Mars” mainly because of its reddish color which was reminiscent of blood and war. Interestingly, Mars’s moon - Phobos and Deimos - were named after a Roman myth where Mars, the god of war, was riding a chariot pulled by two horses named Phobos and Deimos.

Question No. 2 Answer: D
Phobos and Deimos are two moons of Mars. However, they are much smaller than our moon at only 22.2 km and 12.6 km in diameter respectively. Phobos and Deimos were named after two mythological creatures meaning panic/fear and terror/dread. Oberon and Titania are moons on Uranus and Callisto is a moon on Jupiter.

Question No. 3 Answer: False
Olympus Mons is only about 2.5 times the height of Mount Everest. In fact, Olympus Mons is about 25 km high while Mount Everest is only about 9 km high. Even though the hotspot below Olympus Mons cooled down, Olympus Mons still holds the record of the largest volcano in the solar system.

Question No. 4 Answer: A
Carbon Dioxide and Nitrogen are the main constituents of Mars’s atmosphere. Carbon Dioxide accounts for 96% of the planet’s atmosphere while Nitrogen accounts for 1.9% of the planet’s atmosphere. Nevertheless, the atmosphere of Mars is still much thinner than the atmosphere of Earth.

Question No. 5 Answer: C
Out of the 56 total Mars missions to this date, only 26 of them were successful. In general, missions to Mars have always been a very difficult task. The missions to Mars started back in the 1960s and they still continue to this day. However, they still come with great risk and uncertainty.

Question No. 6 Answer: True
This statement is true. The volume of Mars is roughly equal to the volume of 0.151 Earths. Therefore, you could easily fit a little more than six Mars into one Earth. In comparison, the diameter of Mars is 6779 km while the diameter of Earth is 12742 km.

Question No. 7 Answer: B
Sojourner, named after a women’s rights activist, was the first wheeled vehicle to be deployed on Mars. This was the first step taken for more detailed observations on the surface of Mars. The rover had landed on July 4th of 1997 in the Ares Vallis region of Mars.

Question No. 8 Answer: A
The orbital period of Mars is 687 days which is just shy of two Earth years. This is mainly due to the fact that the orbital radius of mars and its distance from the sun is much greater than those of Earth. This is why the seasons on Mars last roughly six months compared to the seasons on Earth which only last three months.

Question No. 9 Answer: B
Perseverance is the name of the Martian rover that is set to be launched from Earth in July 2020. It is expected to touch down on Mars on February 2021 near the Jezero crater. Ingenuity will also be launched at this time, but it is a small robotic helicopter. Endurance and Persistence were not real Mars rover launched.

Question No. 10 Answer: D
The Tharsis Rise, Elysium Mons and Argyre Basin are all geographical locations on the Martian surface. However, the Valles Vikings does not exist. The name is actually Valles Marineris which is a system of canyons that run along the Tharsis Region. This region is also home to some of the largest canyons in the solar system.

Question No. 11 Answer: C
The average temperature throughout the surface of Mars is -63 °C which is quite low when compared to the average temperature on the surface of Earth at 14 °C. The temperatures on the surface of Mars can reach a high of 20 °C in the Summer near the equator and -150 °C in the Winter near the poles.

Question No. 12 Answer: A
Mars is approximately 228 million kilometers from the sun which is one and a half times the distance from Earth to the sun. This is roughly equal to 1.5 AU (astronomical units). Based on this distance, it takes around 13 minutes for light to travel from the sun to Mars.

Question No. 13 Answer: True
That statement is true. Due to large amount of fine dust particles and necessary atmospheric conditions for wind, dust storms are fairly common on Mars. However, these dust storms are intense which can reach upwards to 110 kmh and last for a couple of days. Sometimes, the dust storms are so intense that they can cover the entire planet for weeks.

Question No. 14 Answer: False
Although the Martian daytime sky is red, their sunsets are quite different. In fact, the blue Martian sunsets actually originate from the fact that the blue light penetrates the atmosphere slightly more efficiently. Unlike the bright and vivid sunsets on Earth, the sunsets on Mars are dull and somber.

Question No. 15 Answer: False
Mars is the second smallest planet in our solar system followed by Mercury, and it is fourth in order from the sun. It is the last rocky planet in the from the sun and comes right before the asteroid belt. Mars has a volume of 1.6 x 1011 km3 which is roughly equal to 0.151 Earths.
Mars 2020 is a NASA rover mission with a targeted launch date of July 17, 2020. The rover and its companion helicopter drone are set to land within a Martian crater on February 18, 2021. The mission will investigate the possibility of past life having existed on Mars. The rover will cache sample containers along its route for a potential future Mars sample-return mission.
The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first Mars lander which will conduct intensive studies on Mars inner composition - the crust, mantle, and core. This will also answer important questions about how the rocky planets in our Solar System, as well as rocky exoplanets, were formed.

Curiosity had an exciting landing followed by people all around the world. The rover was part of the MSL mission, whose goal is to determine if microbial life was capable of being supported by either recent or past environments.

The first scientific goal for the Mars rovers, Spirit and Opportunity, was to hunt down and study the characteristics of rocks and soil on Mars, looking for evidence of past water activity. Combined, the rovers have sent out hundreds of thousands of high-resolution photos of the Martian terrain.

The Mars Atmosphere and Volatile Evolution mission (MAVEN) launched Nov. 18, 2013, to explore Mars’ upper atmosphere, ionosphere, and its interactions with the Sun and the solar wind. Scientists hope to attain a more concise idea of what Mars may have looked like in the past, and to learn more about Mars’ atmosphere and climate, liquid water, and planetary habitability, over time.

Spirit and Opportunity were targeted to land on sites on opposite sides of Mars because of the possibility of liquid water existing at those areas, in Mars’ past. Meridiani Planum, Opportunity’s landing site, was chosen because there was possibly a former lake in a giant impact crater there. Spirit was sent to Gusev Crater, where the existence of mineral deposits made the case for the possibility of water in the past.

On Nov. 5, 2013, India launched its first mission to the Red Planet to test key technologies for interplanetary exploration and to study the Martian surface and atmosphere from orbit. The Mars Orbiter Mission (MOM) is also sometimes referred to as Mangalyaan, a Sanskrit term for Mars craft.

ExoMars will send a European rover, Rosalind Franklin, and a Russian surface platform, Kazachok, to the surface of Mars. The primary objective is to land the rover at a site with high potential for finding well-preserved organic material, particularly from the very early history of the planet. The drill is designed to extract samples from various depths, down to a maximum of two meters.

Mars 96 included an orbiter (with more than 20 science instruments), two landers (each with seven instruments), and two penetrators (with 10 instruments each). Several European countries had major science instruments aboard. Germany, France, and Finland alone spent more than $200 million on the mission. The mission failed when the second stage of the rocket cut off extremely early.
The Red Planet has been studied throughout human history. The very first mission to Mars was sent in 1960, while the first probe landed in 1971. We've hidden 36 words related to Mars exploration below. They may be placed horizontal, vertical, or even diagonal. Good luck!
“I haven’t a clue if there is life on other planets, but I’d be charmed if we found a unicellular organism on Mars. It would change our whole concept of life on Earth.”

~ Tommy Lee Jones